
MFM Emulator System Architecture
ROUGH DRAFT

Seth Morabito

June 17, 2014

Contents

1 Summary 1

2 Overview 2
2.1 Structure . 2

2.1.1 MCU . 3
2.1.2 CPLD . 3
2.1.3 Data Bus . 3
2.1.4 Control Bus . 4
2.1.5 Host Interface . 5
2.1.6 ST506/ST412 Bus . 5

3 Operation Overview 6
3.1 Emulated Disk Read . 6
3.2 Emulated Disk Write . 8

4 Open Issues 9
4.1 Write Timing . 9
4.2 Write Precompensation and Postcompensation 9

5 Implemenation TODO List 9

1 Summary

The MFM Emulator is designed to act as a drop-in replacement for MFM
disk drives. It is built around an Atmel ARM Cortex-M3 microcontroller
and a Xilinx CoolRunner-II CPLD.

1

The MCU controls loading and storing raw MFM data into virtual disk
files on an SD/MMC card, while the CPLD provides glue logic and real-time
MFM data streaming.

2 Overview

2.1 Structure

Figure 1: System Architecture

2

2.1.1 MCU

The MCU is an Atmel SAM3X8E operating at 84MHz. It fills several roles.

• It has an integrated 32KB buffer that holds one full cylinder of data
in fast internal SRAM.

• It coordinates loading sector data from virtual disk files on a standard
SD/MMC card.

• It responds to interrupts and maintains a state machine to handle read
and write requests from the host.

2.1.2 CPLD

The CPLD is a Xilinx CoolRunner-II clocked at 50MHz. Its primary re-
sponsibility is real-time raw MFM streaming, but it handles quite a few
other tasks.

• It has a small 64-byte FIFO buffer ("the MFM Buffer") that stores a
cache of raw MFM data that is either being streamed into or out of
the host system’s disk controller.

• During host read operations, it shifts data written by the MCU out of
the MFM buffer and into a serial MFM data stream with the correct
timing.

• During host write operations, it shifts serial MFM data from the host
into the MFM buffer, where it can be read by the MCU a byte at a
time.

• It decodes the head select lines and passes an interrupt to the MCU
when the selected head has changed.

• It counts steps, maintains the current cylinder number, and interrupts
the MCU when stepping has finished.

2.1.3 Data Bus

The data bus is a bi-directional, tri-state bus with eight data lines that
provides communication between the MCU and the CPLD MFM Buffer.

The primary purpose of the data bus is to transfer data between the
MCU’s track buffer and the CPLD’s MFM buffer, and to communicate state
changes from the CPLD to the MCU. The data transfer is coordinated by
the control bus, described below.

3

2.1.4 Control Bus

The control bus coordinates data transfers between the CPLD and the MCU.
It consists of the following four lines.

Buffer Ready (/BRDY)
CPLD Output. During disk read (MFM buffer write) operations, a
low level on this line indicates that the buffer is NOT FULL, and can
be written to by the MCU. During emulated disk write (MFM buffer
read) operations, a low level on this line indicates that the buffer is
NOT EMPTY and can be read from by the MCU.

Buffer Error (/BERR)
CPLD Output. During disk read (MFM buffer write) operations, a
low level on this line indicates that the buffer has over-run. During
disk write (MFM buffer read) operations, a low level indicates that the
buffer has under-run.

Data Ready (/DRDY)
CPLD Output. When asserted, the data on the data bus is valid.

Write Enable (/WE)
CPLD Input. Indicates the direction of read/write operations on the
data bus. A high level indicates that the MFM buffer may be read from
(disk write operation). A low level indicates that the MFM buffer may
be written into (disk read operation).

Output Enable (/OE)
CPLD Input. When low, the data bus output is enabled. When high,
the data bus is high impedence (tri-stated).

Address (A0, A1)
CPLD Input. These two lines taken together are decoded as the ad-
dress of the CPLD register to be read from or written to by the MCU.

A1 A0 Register
0 0 MFM Buffer
0 1 Cylinder Number (High)
1 0 Cylinder Number (Low)
1 1 Bit Count

4

2.1.5 Host Interface

The Host connection is a standard ST506/ST412 interface operating at 5V.
Standard open-collector bus drivers and receivers are used, and lines are
terminated in accordance with the ST506/ST412 specification.

The bus drivers and receivers interface the host to the 3.3V CoolRunner-
II CPLD through a set of three 74LVC245 transceivers in a logic level shifting
configuration.

2.1.6 ST506/ST412 Bus

The ST506/ST412 bus is described in the ST412 OEM Manual (Seagate,
1982) 1, and is summarized here. All lines except the differential line pairs
MFM Write Data and MFM Read Data are driven by open-collector
drivers, terminated by 220/330 Ohm resistor pairs, and are active-low.

Seek Complete
Asserted by the MFM emulator to indicate that a seek operation has
completed.

Ready
Asserted by the MFM emulator to indicate that it is ready to read,
write, or seek, and that I/O signals are valid. When this line is false,
all writing and seeking is inhibited.

Track 0
Asserted by the MFM emulator to indicate that the currently selected
track is Track 0.

Write Fault
This line is not used.

Index
Asserted by the MFM emulator once every approximately 16.67ms to
indicate the start of a track of data during read operations. The pulse
is held low forl approximately 200us.

Step
Asserted by the host controller to indicate that the selected track num-
ber should increase or decrease, depending on the value of the Direc-
tion In line.

1http://bitsavers.informatik.uni-stuttgart.de/pdf/seagate/ST412_
OEMmanual_Apr82.pdf

5

http://bitsavers.informatik.uni-stuttgart.de/pdf/seagate/ST412_OEMmanual_Apr82.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/seagate/ST412_OEMmanual_Apr82.pdf

Direction In
Asserted by the host controller to indicate the direction of stepping. A
high value on this line indicates that the track number should decrease
with each Step pulse. A low value indicates that the track number
should increase with each Step pulse.

Write Gate
When asserted by the host, data from the host is written to the MFM
emulator.

Head Select 0, 1, 2, 3
These four lines are asserted by the host controller to select heads 0
- 15. Head Select 0 is the least significant line. Note that on older
drives, Head Select 3 was the Reduced Write Current line, and not
used as a head select at all. This behavior is not planned for the MFM
emulator.

Drive Select 1, 2, 3, 4
Any one of these lines can be asserted by the host to select a different
virtual, emulated drive.

Drive Selected
Asserted by the MFM emulator to indicate that the drive has been
selected by one of the Drive Select lines.

MFM Write Data
This differential pair is used by the host to write data to the emlulated
MFM drive.

MFM Read Data
This differential pair is used by the host to read data from the emulated
MFM drive.

3 Operation Overview

3.1 Emulated Disk Read

When the host system wishes to read data from the MFM emulator, it begins
by seeking for the desired head and cylinder. This head and cylinder are
translated into an offset into a virtual drive file residing on an SD/MMC
card. After the seek operation has completed, raw MFM data representing

6

the selected head and cylinder is continuously streamed to the host system,
exactly as it would be if it were reading from a real disk drive. The host
system is fully responsible for finding the desired sector in this data stream.

The full procedure for reading is as follows:

1. The host selects a drive with one of its DRIVE SELECT lines.

2. The MFM emulator responds by opening the correct virtual hard drive
file on the SD/MMC media, and determining the currently selected
cylinder and head number. This is translated into an offset into the
file. The contents of the desired cylinder are then read into the MCU’s
Track Buffer.

3. After the load is complete, the MFM emulator asserts READY,
SEEK COMPLETE, and, if the currently selected track is track
0, TRACK 0.

4. The MFM emulator begins transferring data from the MCU’s Track
Buffer to the CPLD’s MFM Buffer, byte by byte, from which it is
streamed to the host. This will loop continuously until the drive is
stepped, the head is changed, or the Drive Select line is de-asserted.
At the start of each loop of the Track Buffer (approximately once every
16.67ms), the INDEX line is asserted for 200us.

5. The host may choose to step to a new track, change the head number,
or both, at any point. If so, one or more of the following occurs:

• The appropriate DIRECTION IN is set.

• The appropriate HEAD SELECT are asserted.

• The STEP line is pulsed one or more times.

6. If the any of these conditions is met, the MFM Emulator responds as
follows:

• The MFM emulator immediately de-asserts the SEEK COM-
PLETE line and begins counting the the number of steps taken.

• When it has been at least 5ms since the last step pulse, the MFM
emulator makes note of the new head and track number, and then
reads the new track from the virtual disk file into the MCU’s track
buffer.

7

• The MFM emulator re-asserts SEEK COMPLETE and, if the
currently selected track is track 0, TRACK 0.

• The MFM emulator begins streaming data for the new track (see
#4 above)

3.2 Emulated Disk Write

Writing to disk is a bit more complicated. The process starts identically to a
read operation, with the host system selecting a head and cylinder to write
to, and then reading the data stream until the desired sector is found.

The procedure for writing is as follows:

1. The host begins by reading the track that contains the sector it wishes
to write to.

2. When the correct sector ID has been found, the host asserts WRITE
GATE.

3. Immediately upon detecting the falling edge of WRITE GATE, the
CPLD switches from READ to WRITE mode. Here, some gymnas-
tics take place in the CPLD. It latches the current bit position in the
cylinder stream it has been writing, and stores this in its BIT PO-
SITION register. Then, it interrupts the MCU and switches it from
read to write mode, and simultaneously begins to store the stream of
MFM write data into its MFM buffer.

4. The MCU begins its read operation by asking the CPLD for the exact
position in the bitstream where the write operation began.

5. After the bit position is transferred to the MCU, the MCU starts to
read data from the CPLD’s MFM Buffer and into it’s track buffer, one
byte at a time, starting at the correct bit offset.

6. When the CPLD detects the rising edge of WRITE GATE, it
switches from WRITE to READ mode and interrupts the MCU again.

7. The MCU finishes any data transfer operations it was carrying out,
and then starts streaming its newly written track buffer back to the
CPLD.

8. The next time the CPLD’s MFM buffer is full, the MCU will conduct
housekeeping by flushing the dirty track buffer back out to the virtual
disk file on the SD/MMC card.

8

4 Open Issues

4.1 Write Timing

The timing of switching from read to write mode is critical, and must be
handled in real time. The MCU must know EXACTLY where in the bit
stream the switch to write took place.

4.2 Write Precompensation and Postcompensation

The question of how to handle precompensation and postcompensation from
the host controller – or even whether we need to handle it – is an open
question. Host controllers typically have complex logic to manipulate the
pattern of bits written to disk in order to compensate for the influence that
one bit can have on another on a magnetic medium. It is unclear how this
will interact with the controller. If there is an interaction, the CPLD will
need to de-compensate on writes.

5 Implemenation TODO List

• � CPLD/MCU Communication Protocol.

• � Spec for all CPLD registers.

– � MFM Bit Count register.

– � Cylinder Number register.

• � MCU Track Buffer implemenation with bit-wise offset.

• � Verilog for MFM Buffer.

• � Interrupt routing (CPLD)

• � Interrupt handling (MCU)

9

	Summary
	Overview
	Structure
	MCU
	CPLD
	Data Bus
	Control Bus
	Host Interface
	ST506/ST412 Bus

	Operation Overview
	Emulated Disk Read
	Emulated Disk Write

	Open Issues
	Write Timing
	Write Precompensation and Postcompensation

	Implemenation TODO List

